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INTRODUCTION

A necessary condition for form;ng a compound nucleus in a heavy-ion re-

a:tion is that the dynamical trajectory of the fusing systerr pass inside the

fission saddle point in a

systems lighter than a cr

the fission saddle point

multidimensional deformation space. For nuclear

tical size and for relatively low angular momentum,

ies outside the point of hard contact, and this

requirement. is automatically satisfied once a one-dimensional interaction

barrier is overcome. However, for heavier nuclear systems and/or for high

angular momentum, the fission saddle point lies inside the contact point, and

the center-of-mdss bombarding energy must then exceed the maximum in tb,e une-

dimensional interaction barrier by an amount dE in o~der to form a compourld

1,2
nuclells, This was recogni~rfi already

trajectories for fusincj systems have b~en

preaches,
3-17

111 one approach,
3-7

for a systm) whose shape

n 1969, and since 1973 dyilamical

calculated by use cf s~veral ap-

clils$icai equations of Il]otioll”w~re solved l)Uttl(?~’iCa]ly

is sl)ecified in terms of smoothly joined portions of

of revolution, with r(~alist.ic expressions for the

),.J’d)
(/’



most were performed for zero dissipation.

Irranother approach, pioneered by Swiatecki,
8-11

classical equations of

motion were solved approximately in closed form for a system whose shape is

specified in terms of two spheres connected by a conical neck, with schematic

expressions for the energies and forces involved. Nuclear dissipation was

calculated by expanding the one-body wall-and-window formula
19-21

to third

order in the neck radius, The solution of this schematic model is charac-

terized by five constants, some of whose values have been estimated both

theoretically
8,12-14 9-11

and from comparisons with experimental data. 22 The

theoretical estimates have been made by use of both the original schematic

8
model

12-14and improved models, in which the nuclear shape is specified in

terms of two spheres connected smoothly by a hyperbolo

lectivc potential and kinetic energies and one-body wa”

sipation are calcula~ed more accurately, and the equat.

tegrated numerically.

dal neck, the col-

l-and-windcw dis-

ons of motion ale in-

In still another approach,
15-17

the time-dependent Hartree-Fock equations

of motion were integrated numerically for a two-dimensional grid corresponding

to axially symmetric nuc’lear shapes. For moderately

of fusion is at an ~neryy conslds!rat)ly above the max.

barrier, and this phenor(lenon is at least qualitativ~”

thr(lsholcis found in the m(lcroscol)ic studies.
3-14

heavy systems, the onset

mum in th? {interaction

y T’t?li!tf?d to the energy



29
obtained in an earlier study was based on comparisons with a schematic

model ,
8

whose estimated constants are now known to be unreliable. ) Although

the comparisons with experimental data have sometimes been interpreted as

evidence for one-body wall-and-window dissipation, it must be borne in mind

that the additional energy arises from the need to overcome both repulsive

Coulomb and/or centrifugal forces on the or,e hand and dissipative forces on

the other hand. In the comparisons made to date, no attempt has been made to

distinguish between conservative and dissipative forces.

It is our major purpose here to calculate within a single unified model

the dependence of the additional energy AE upon Z2/A for various types of

dissipation,, in an effort to ultimately determine the magnitude and mechanism

of nuclear dissipation from comparisons with experimental data. Since both

our predictions and Lhose of other groups depend

the model, we also study the effect of the shape

namical thresholds.

somewhct upon t+e de~ails of

parametrization on t~,e dy-

DYNAMICAL MODEL

We focus from the outset ori a few collective deqrees of treedom that dre

most important and describe the nuclear shape by means of the three-ouactratic-

30
surface parametrization, in which an axially symmetric shap~ consists of

smoothly joined portions of three quadratic surfaces of r(!volution. Fur this

paper wc consid(!r otlly h(’ad-on Il]ass-sy[l)lllet<ricCO1! ibiot)s, which reduces the

number of in(i(!~)(’ndent,collectiv~ coordinates to three

project. out of t.h

that have ~~)[~ciill

t’” 2’2>

It, is convenient to

s tl~ta(~~-(lilll(+l)siol](]lspace two monwt]t,sof the distril)ut.ien

Pll~!, iLiil Si{jtli fi(.illlC[8. TI1(?SC ilr’[’ (iUf 111’d by
3-’7,18,19

(1)



and

u
2 1/2=2<(Z -’Z>)> , (2)

where z is measured along the symmetry axis and the angular brackets denote an

average over the half volume to the right of the midplane of the reflection-

symmetric shape. The moment r gives the distance between the mass centers of

the two colliding ions, while u measures the fragment elongation or the neck-

ing in the combined system. In general,
● ’

they are functions of the N collec-

tive coordinates q = ql,., .SqN that specify the shape of the system.

The nuclear potential energy of deformation V(q) is calculated in terms

of a Coulomb energy and a double volume integral of a Yukawa-pl us-exponential

folding function,
31

with va?ues of the constants determined in Ref. 32. The

collective kinetic energy is given by

,-

T = ~Mij(q) ~i ~j - + [M(q)-+ij pi pj , (3)

where the collective momenta p are related to the collective vf$locities ~ by

Pi = Mij(q) ~j , (4)

4

Throughout, this paper we u~e the convention that repeated inc]ices are to be

summed over from 1 to N, l-he inertia tensor M(q), wh

shape of the Systwn, is calculated for il~compressible

flow by use of the Wclrner-Wheeler i~pproximation.
18,30

rlw coupling bet.we~n the collect,i’~o and internal

ch is a function of the

nearly irrotational

degr~es of freedonl gives

(5)



For t-he calculation of the shape-dependent dissipation tensor q that describes

the conversioil of collective energy into internal single-particle excitation

18,19 one..energy, we consider zero dissipation, ordinary two-body viscosity,

body wall-formula dissipation,
19-21

arid one-body wall-and-window dissipa-

tion 19-21
. For ordinary two-body viscosity, we use the viscosity coefficient

v = 0.02 TP, which optimally reproduces average fission-fragment kinetic

energies for the fission of nuclei at high excitation energies throughout the

Periodic Table when the most recent constants
32

of the Yukawa-pl us-exponential

potential are used. The two types of one-body dissipation differ from each

ct~,er in the following way: In the wall formula all vel~cities normal to the

nuclear surface are measured relative to the stationary center of mass of the

combined system and no window telbm is included, whereas in the wall-and-window

formula surface normal velocities for a given half of the system are measured

relatiave to the moving center of mass of that half, and an additional term is

included to describe dissipation arising from the flux of partic’

the window separating the two halves.

During the approach of the two nuclei from infinity and IInt’

tial neck has developed, we constrain the nuclei t~ spheres. Afl

the nuclear density i~ assumed to rerain con~t.ant throughout the

es through

1 a substan-

er contact

shape, with

Lhc displaced matter forming a hyperboloidal neck. For all cases except zero

dissipation, we calculate the dissipative force during the approach and con-

ttict stages from Randrup’s proximity window dissipation model,
33

which takes

into ~ccount the momentum t,ransfer between the two nucl~~i when single par-

ticles pass through the window. When the neck radius reaches a critical size,

wh{ch 1s taken to be 3,0 fm for all cases except wall-and-window dissipation,

where it Is t.nket~to be 3,5 fm for numerical reasons, we switch to the full

tl~t’ee-~{:ladtati[:-sllrface parametrization.

5



The trajectory for the average dynamical path is determined by solving

18numerically the generalized Hamilton equations

hi = (M-l)ij pj (6)

(7)

CALCULATED RESULTS

In our studies of the dynamics of heavy-ion r~actions, we are especially

concerned with whether a particular collision leads to compound-nucleus forma-

tion. For this purpose, we plot in r-u deformation space both the dynamical

trajectory for a particular reaction and the location of the saddle point for

the combined system. The criterion6 adopted for compound-nucleus formation is

that the trajectory in r-u space pass inside (to the left of) the saddle

point. When the trajectory passes outside (to the right of) the sadcile point,

the system reseparates in a fast-fission
34 or deep-inelastic reaction.

We also obtain the threshold er,ergy for compound-nucleus formation. Tilis

minimum energy required to produce ‘ compound nucleus is determined by :nding

the dynamical trajectory that just passes through the saddle point, Since odr

calculations arc for mats-symmetric reaction; , there is no difference here

between the true saddle ~mint and the conditional saddle point for fixed mass

asymmetry,
8-14

TITUS, the fusion that we obtain i> exclusively compound-

rrucleus formation,
34

with no contributiotl from nt~~ss-et{{jilil)i’atedfi~st fission,

For the reaction 110
Pd + 1%d , 220U at a cc,~ter-of-rrl,lssbombarding

en~rqy that exceeds the maximum in t.tw (Jrle-ffitilef)si{)rlalint[?ractiun barrier Ily

6



20 MeV, we show in F

dissipation. In add

an example of pure w

g. 1 dynamical trajectories for five different types of

tion to th~ four types previously mentioned, we include

ndow dissipation, obtained by omitting the wall contri-

butio,l in wall-and-window dissipation. The dynamical paths for no dissipation

and two-body viscosity, which are very similar because the viscosity coef-

ficient p = 0.02 TP is relatively small, prefer changes in separation r rather

than neck formation u and lead to compound-nucleus formation. On the other

hana, the one-body-dissipation models all generate trajectories in which u

changes much more rapidly than r, leading to reseparatio~ rather than com-

pound-nucleus formation.

For this same reaction and bombarding energy, we show in Fig. 2 dynamical

trajectories for four types of dissipation when the end bodies are constrained

to be spnerical, which is a widely used approximation. 12-14
The most dramatic

effect on the trajectories occurs for two-body viscosity, where the spherical

constraint leads to more compressed shapes in Fig. 2 compared to the uncon-

strained shapes in Fig. 1, As shown in Table 1, constraining the ends to be

spherical can lead to significant differences in the calculated additional

energy AE required t~ form a compound nucleus. For example, for the wall

formula ~he additional energy AE is about 30 MeV larger when the spherical

constraint is not imposed.

For each of the four types of dissipat

the additional energy AE requjred to form a

Z2/A for the combined system, with the requ

on considered, we have calculated

compound nucleus as a function of

rement that the target and pro-

jectile each lie along Green’s approximation to the valley of @-stability.35

As shown in Fig, 3, for both types of one-body dissipation, which correspond

to highly overdamped motion, our calculated values of AE are in general an

order of magnitude larger than those for zero dissipation and ordinary two-

7



body viscosity, which correspond to underdamped motion. The values of AE for

wall-formula dissipatiorl are larger than those for wall-and-window dissipation

primarily because the surface normal velocities measured relative to the sta-

tionary center of mass of the entire system in the former case are larger than

the normal velocities measured relative to the moving centers of mass of each

half of the system in the latter case.

Above the threshold value (Zz/A)thr which depends somewhat upon dis-

sipation, our calculated dependence of AE on Z2/A - (Z2/A)thr contains a

linear component because we begin our dynamical calculation in the three-

quadratic-surface parametrization for a shape with a nonzero neck radius. To

lowest order, AE depends quadratically
8-11

on Z2/A - (Z2/A)thr when the

initial conditions correspond to starting with spheres at the top of the one-

dimensional interaction barrier moving radially inward with kinetic energy AE.

Howevei-, this lowest-order quadratic dependence is destroyed when dynamical

effects that occur during the approach and contact stages are taken into

account. Also, quant~l sub-barrier tunneling destroys the quadratic depen-

dence. Therefore, little physical significance should be attached to the

lowest-order functional dependence of AE on Z2/A - (Z2/A)thr and consequently

to the precise value of (Z2/A)thr. Instead, attention should be focused on

the rate of increase of AE with increasing Z2/A a few MeV above the threshold.

COMPARISON WITH EXPERIMENTAI “ITA

In order to compare our results calculated for symmetric systems with

experimental values, it is necessary to scale the asymmetric sy”[c$ms that have

been studied exFerinlentally into symmetric ones. Near the cont~ct regiol~, the

effective value8-14)22-2”7’2g

8



(Z2/A)eff l’3A:’3(A;~3 + A;’3)]= 4 21 Z2/[Al (8)

defined in terms of the atomic numbers and mass numbers of the projectile and

target

fusing

to the

provides an approximate scaling. Because the dynamical trajectory of a

system moves from the contact region, where (Z2/A)etf i ~ appropriate,

saddle-point region, where Z2/A for the combined system is appropriate,

scaling in terms of the geometric mean 11,12,23

(Z2/A)mean= [(Z2/A)(Z2/A)eff]l’2 (9)

should be approximately valid. This expectation can be verified by repotting

the results presented in Fig. 4 of Ref. 13 versus (Z2/A)mean instead of

(Z2/A)eff, which largely reconciles Feldmeier’s calculations for asymmetric

systems with those for symmetric systems presented in Table 1 of Ref. 13. The

.12
more recent calculatioi~s for asymmetric systems by Blocki and Swiateckl also

support the choice of (Z2/A)mean for a scaling variable.

Figure 4 compares our calculated values of the additional center-of-mass

bombarding energy AE required for compound-nucleus formation with existing

experimental values, Solid symbols denote values extracted from measurements

of evaporation residues, 23,24,29 which require the formation of true compound

nuclei. Open symbols denote valu?s extracted from measurements of nearly

9,25,26
symmetric fission-like-fragments , where fast-fission processes con-

tribute in addition to true compound-nucleus tvrmation. For both the solid

and open symbols, the experimental values of the additional energy AE are

determined by subtracting from the experimental barrier heights extrapolated

values that correctly reproduce the smooth trends for somewhat lighter nuclei.

For consistency with recent practice,
9-11,23

these extrapolated values are

taken to be 96% of the barrier heights calculated
23

with the proximity po-

9



tentia136 for all cases except the open triangle, where the procedure of Ref.

26 is followed.

Taken together, all experimental values of AE in Fig. 4 agree much better

with results calculated for underdamped motion arising from two-body viscosity

than with results calculated for overdamped motion arising from either type of

one-body dissipation. However, because the solid symbols usually lie somewhat

above the open symbols, and because the error bars for the three solid symbols

with the largest values of (Z2/P)mean extend to ~, this conclusion must be

regarded as tentative.

OUTLOOK

We are on the brink of determining the magnitude and mechan

dissipation. 10 do this unambiguously, we need further evaporat’

sm of nuclear

on-residue

measurements, which represent the only definitive proof of compound-nucleus

formation, for h~~vy nearly symmetric systems spanning the threshold region.

As an alternative approach, calculations Ire presently underway for some asym-

metric systems that have been studied experimentally.
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Table 1. Calculated additional energy AE relative to the maximum in the

one-dimensional interaction barrier required to form a compound nucleus

in a head-on collision for ll”pd + Il”pd + ‘*”U. The neck radius rn at

which the three- qu~dratic-surface numerical integration begins is 3.0 fm

unless indicated otherwise.

—— -—.

Type of dissipation AE (MeV)
—-

Ful- thlee-quadratic- Spherical
SUrldCe pat’ametrization ends

— —

No dissipation l,5t0.2 405fo.1

Two-body viscosity, p = 0.02 TP 5 t 0.5 005*0.5

Wall formula 9of2 60 f2

Wall and winduw 36 *0,5

Wall and window, rn = 3.5 fm 39 to.5 32 * 0.5



FIGURE CAPTIONS

Fig. 1. Effect of dissipation on dynamical trajectories in the r-u plane

for the reaction ll”pd + l~”pd + 220U at AE = 20 MeV in the ‘full three-quadratic-

surface parametrization. The interval AE is defined as the difference between

the bombarding energy in the center-of-mass system and the maximum in the one-

dimensional interaction barrier, The moment r is the distance between the

centers of mass of the two halves of the system, al]d the moment u is the sum of

the root-mean-square extensions along the symmetry axis ot the mass of each

half about its center of mass, both measured in units of the radius RO of the

combined system. Solid circles indicate the single-sphere nnd tangent-spheres

configurations, and the open circl~ illlicates where the neck radius is 3.0 Tm.

At this point the three-quadratic-surface r)umerical integration begins for

all cases except wall-and-window dissipation, for which it l.mgins when the

nec~c radil!s is 3,5 fm. The saddle-point configuration for the combined sjstem

1s il:dicat.edby a cross (x),

Fig. 2, Effect of dissipation on dynamical trajectori~?s ir~ the r-u plane

for the reaction llOPd + llOpd , 220 U at AE - 20 MeV when t~~e onci bodies are

constrairwd to be spherical. (In this figure the tl~ret’-c~tl{l(lratlc-s~lrface

‘~lmwrical irlt~qrat,{on begins wher~ the neck radius Is 3.0 fm also for wall-and-

wirldow dissipnt,ion.)

fig, 3, lffect of dlsslpnt.ion on t,hc additional corltcr-of-mass bombarding

en~)rqy Al r$?lntivp to tlw maximum {n t.hr ~Jrl(*-Liinl[’f\sio,lalinteraction barri(?r

required to form is compo(lnd rluc:lou!jin n h~nd-on collisiol~. lhe smooth curvps

~7/firPfQt’5 t(’1

l:hosvn to I{e

3!)),



Fig, 4. Comparison of additional energy AE required for compound-nucleus

formation calculated for symmetric systems with experimental values for asym-

metric systems characterized by (Z2/A)mean, defined by Eq. (9). Values ex-

tracted from evaporation-residue measurements are represented by solid symbols

(., Ref. 24; ■, Ref. 29; ~nd A, Ref. 23), whereas values extracted from

measu~ements cf nearly symmetric fission-like fragments are represented by

open symbols (o, Ref. 9; r), Ref. 25; ~r~dA. Ref. 26).

10
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ADDITIONAL ENERGY AE (*V)
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